Zusammenfassung AlgoKS

20. Januar 2014

Inhaltsverzeichnis

1	kont	tinuierliche Daten	2
2	Mat	rizen	2
	2.1	Determinanten	2
	2.2	Singulatität	2
	2.3	Orthogonalität	2
	2.4	Eigenwerte	2
	2.5	Matrixnormen	2
3	Dire	ekte Verfahren zur Lösung von LGS	3
	3.1	Gaußsches Eliminationsverfahren	3
	3.2	LR - Zerlegung $\mathcal{O}(n^3)$	3
		3.2.1 Pivotsuche	3
		3.2.2 Anwendung: Berechnung der Determinante	3
		3.2.3 Anwendung: Lösen mehrerer Gleichungssysteme mit A als Koeffi-	
		zientenmatrix	3
		3.2.4 Rechenaufwand	3
		3.2.5 Alternativen?	4
		3.2.6 Spezielle Matrizen	4
	3.3	QR - Zerlegung	4
4	Mat	rixstrukturen	4
	4.1	Nur benötigte Werte speichern: $\#non_zero \cdot 3$	4
	4.2	Compressed Row Storage (CRS): $\#non_zero \cdot 2 + \#rows + 1$	5
	4.3	Block Compressed Row Storage (BCRS)	5
	4.4	Compressed Column Storage (CCS): $\#non_zero \cdot 2 + \#columnss + 1$	5
	4.5	Matrix als Graph	5

	4.6	Blockmatrizen
	4.7	Faltung
		4.7.1 Anwendung: Filter
	4.8	Filter
Б	Fou	rior Transformation 7
J	5 1	Diskratision 7
	5.2	East $\operatorname{FT}(\mathcal{O}(n \log n))$
	0.2	$\operatorname{rast-r} \mathbf{I} = \mathcal{O}(n \log n) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
6	Qua	ntisierung 8
	6.1	Vektorquantisierung 8
7	Inte	rpolation 8
	7.1	Resampling
	7.2	Interpolation
	7.3	Lokale Verfahren
		7.3.1 nearest neighbor (Fehler: $\mathcal{O}(h)$)
		7.3.2 linear (Fehler: $\mathcal{O}(h^2)$)
		7.3.3 Catmull-Rom (Fehler: $\mathcal{O}(h^3)$)
	7.4	Globale Verfahren
		7.4.1 Polynom
		7.4.2 B-Spline
8	Frei	formkurven 11
U	81	Bernstein-Polynome 11
	8.2	Bezierkurven 12
	8.3	Bilineare Interpolation 12
	8.4	Coons-Patch
•		
y	Inte	rpolation multivariater Daten 13
	9.1	Lineare Interpolation
		9.1.1 Baryzentrische Koordinaten
		9.1.2 Globale Verfahren
10	Sing	gulärwertzerlegung 13
	10.1	Anwendung: low-rank-approximation
	10.2	Anwendung: Lösen singulärer Gleichungen
	10.3	Numerische Bestimmung der SVD 14
11	Нал	ptachsentransformation - PCA 14
	11.1	Bestimmung der PCA
	11.2	OR-Zerlegung
	<i>-</i>	11.2.1 Jacobi-Rotationen $\mathcal{O}(n^3)$
		11.2.2 Householder-Spiegelungen $\mathcal{O}(n^3)$
	11.3	OR-Verfahren
		\sim_{0}

11.4 Spezialfall QR-Zerlegung für tridiagonale Matrizen	. 15
11.5 Bestimmung der Ausgleichsgerade mit Normalengleichungen	. 16
12 Iterative Verfahren	16
12.1 Fixpunktiteration \ldots	. 16
12.1.1 Banachscher Fixpunktsatz	. 16
12.2 Nullstellenbestimmung: Newton-Verfahren	. 16
12.2.1 im \mathbb{R}^n	. 16
12.3 Nullstellenbestimmung: Sekanten-Verfahren	. 17
12.4 Nullstellenbestimmung: Bisektionsverfahren	. 17
12.5 Nullstellenbestimmung: Regula Falsi	. 17
12.6 Bestimmung von \sqrt{a} : Heron-Verfahren	. 17
12.7 Lösen von LGS: Jacobi-Iteration $V_{iter} = -D^{-1}(L+R), A_0 = D$. 17
12.8 Lösen von LGS: Gauss-Seidel-Iteration	. 17
12.9 Lösen von LGS: SOR-Iteration	. 18
12.10cg-Verfahren	. 18
12.11Quasi-Newton-Verfahren	. 18

1 kontinuierliche Daten

Die Menge \mathbb{R} ist überabzählbar unendlich (\mathbb{N}, \mathbb{Z} und \mathbb{Q} dahingegen abzählbar unendlich!)

Fluch der Dimensionen

 $\mathbb{R}^k\to\mathbb{R}^l,$ in den ersten kStellen eindeutig,
 n Werte pro Stelle Speicheraufwand:
 $l\cdot n^k$ Werte.

2 Matrizen

2.1 Determinanten

 $\det(AB) = \det(A)\det(B) = \det(BA)$

 $D \text{ diagonal} \Rightarrow \det(D) = d_{11}d_{22}...d_{nn}$ $L \text{ untere Dreiecksmatrix} \Rightarrow \det(L) = l_{11}l_{22}...l_{nn}$ $R \text{ obere Dreiecksmatrix} \Rightarrow \det(R) = r_{11}r_{22}...r_{nn}$

2.2 Singulatität

Matrix M singulär $\Leftrightarrow \det(M) = 0$ Bedeutung: M nicht-singulär \Rightarrow eindeutiges M^{-1} existiert.

2.3 Orthogonalität

Matrix M orthogonal $\Leftrightarrow M^{-1} = M^T$ Besteht aus orthonormalen Vektoren (Eigenvektoren)

2.4 Eigenwerte

 $(m \times m$ - Matrix M) M hat maximal m Eigenwerte (die Nullstellen des char. Polynoms $p(\lambda) = \det(A - \lambda E)$.

2.5 Matrixnormen

- $||A||_{\infty}$: Maximums-Norm
- $||A||_2$: Euklidsche Norm, $||A||_2 = \sigma_1 (= \max \sigma_i)$
- $||A||_1$: Summen-Norm

•
$$||A||_F$$
: Frobenius norm, $||A||_F = \sqrt{\sum_{i=0}^m \sum_{j=1}^n |a_{ij}^2|}$

3 Direkte Verfahren zur Lösung von LGS

3.1 Gaußsches Eliminationsverfahren

3.2 LR - Zerlegung $\mathcal{O}(n^3)$

Bestimmen der Zerlegung $\sim \frac{2}{3}n^3$

```
T = A;
for(int j = 1; j < n; j++) {
  for( int i = j+1; i <= n ; i++) {
    T[i, j] = T[i, j] / T[j, j] ;
    for ( int k = j+1; k = n ; k++) {
        T[i, k] = T[i, k] - T[i, j] * T[j, k];
    } }
for(int j = 1; j <= n; j++) {
    L[j, j] = 1;
    for(int i = 1; i <= n; i++) {
        if(i <= j) R[i, j] = T[i, j];
        else L[i, j] = T[i, j];
    } }
```

3.2.1 Pivotsuche

 $P_{ij}A$: Vertauschen der <u>Zeilen</u> i und j AP_{ij} : Vertauschen der Spalten i und j

3.2.2 Anwendung: Berechnung der Determinante

 $\det(A) = \det(L) \cdot \det(R) = 1 \cdot r_{11} \cdot r_{22} \cdot \ldots \cdot r_{nn}$

3.2.3 Anwendung: Lösen mehrerer Gleichungssysteme mit *A* als Koeffizientenmatrix

- 1. Löse Rx = y (Rückwärtseinsetzen, $\mathcal{O}(n^2)$)
- 2. Löse Ly = b (Vorwärtseinsetzen, in $\mathcal{O}(n^2)$)

3.2.4 Rechenaufwand

Anhand des Pseudocodes

3.2.5 Alternativen?

Cramer'sche Regel $x_i = \frac{\det(A_{i,b})}{\det(A)}, A_{i,b} =$ Matrix A mit ersetzter Spalte *i* durch *b* Berechnen der Determinanten **sehr teuer**, daher hinfällig.

Inverse Matrix $x = A^{-1}b$ Teurer und ungenauer (\rightarrow numerische Stabilität) als die LR-Zerlegung.

3.2.6 Spezielle Matrizen

Bandmatrizen der Ordnung n mit Bandbreite m Aufwand: $\mathcal{O}(m^2 \cdot n)$ Für m = 3 gilt:

 $\underbrace{\begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ l_1 & 1 & 0 & \dots & 0 & 0 \\ \vdots & & & & \\ 0 & 0 & 0 & \dots & l_{n-1} & 1 \end{pmatrix}}_{\mathbf{L}}$

Hier Laufzeit: $\mathcal{O}(n)$ Operationen

dünn besetzte Matrizen

Problem "Fill-In": 0en werden bei der Elemination zerstört, daher wurden viele Algorithmen entwickelt die das verhindern (sollen).

Cholesky-Zerlegung für pos. def. Matrizen

Es gilt: $A = A^{T}$ (symm.) $x^{T}Ax \ge 0$ für alle $x \ne 0$ A = L D L^{T} Diagonalteil von R $\underbrace{LD^{0.5}}_{\tilde{L}} \underbrace{(D^{0.5})^{T}L^{T}}_{\tilde{L}^{T}}$

3.3 QR - Zerlegung

4 Matrixstrukturen

Je nach Problemstellungen sind die Matrizen sehr groß. Bei 10⁷ Unbekannten: Matrix der Größe 10⁷ × 10⁷: 400 TB bei Datentyp float. Bsp: Temperaturverteilung auf einer Platte: $\frac{1}{4}(u_{i-1,j}+u_{i+1,j}+u_{i,j-1}+u_{i,j+1})$ für $i, j \in \mathbb{N}$

4.1 Nur benötigte Werte speichern: #non_zero · 3

• Wert $(\#non_zero)$

- Spaltenindex (pro Wert, #non_zero)
- Zeilenindex (pro Wert, #non_zero)

4.2 Compressed Row Storage (CRS): $\#non_zero \cdot 2 + \#rows + 1$

- Wert (#non_zero)
- Spaltenindex (pro Wert, $\#non_zero$)
- Zeilenpointer (speichern wo sich die Zeile **ändert**, #rows + 1)

Effiziente Matrix-Vektor-Multiplikation

for (int i = 0; i < n; i++)
{
 y[i] = 0;
 for (int j = row_ptr[i]; j < row_ptr[i+1]; j++)
 {
 y[i] = y[i] + val[j] * x[col_ind[j]];
 }
}</pre>

Nachteile:

- Einfügen und Löschen schwierig
- kein direkter Random-Access möglich

4.3 Block Compressed Row Storage (BCRS)

Dicht besetzte Gebiete werden zu Blöcken zusammengefasst und normal gespeichert, diese werden als Einträge in einer CRS-Matrix verwendet.

Vorteile:

- effektiver bei sehr dicht besetzten Gebieten
- leere Blöcke werden nicht gespeichert

4.4 Compressed Column Storage (CCS): #non_zero · 2 + #columnss + 1

4.5 Matrix als Graph

 $a_{ij} = \begin{cases} 1 & \text{falls Kante zwischen } P_i \text{ und } P_j \\ 0 & \text{sonst} \end{cases}$

Bei unabhängigen Problemen lässt sich das Problem in 2 kleinere Teilprobleme zerlegen. **Beispiel:** Aufteilen des Graphen in 2 gleich große Teilgraphen. Aufwand für Gauß des großen Graphen: $\mathcal{O}(n^3)$

Aufwand für Gauß für die 2 kleineren Graphen: $\mathcal{O}(2\left(\frac{n}{2}\right)^3) = \mathcal{O}(\frac{n^3}{4})$

4.6 Blockmatrizen

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ \hline a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \\ a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4} \end{pmatrix} = \begin{pmatrix} A_{1,1} & A_{1,2} \\ \hline A_{2,1} & A_{2,2} \end{pmatrix}$$

Aufwand für Matrix-Matrix-Multiplikation: $\mathcal{O}(n^{\log_2 7})$ (vs. $\mathcal{O}(n^3)$ bei naiver Multiplikation)

4.7 Faltung

Kontinuierlich (1D) $(f * g)(n) = \int f(\tau) \cdot g(t - \tau) d\tau$ Disket (1D) $(f * g)(n) = \sum_{k} f(k) \cdot g(n - k)$

Eigenschaften:

- f * g = g * f (kommutativ)
- (f * g) * h = f * (g * h) (assoziativ)

Bsp
$$f(x) = (\dots, -1, 2, 3, 1, 2, 4, -2, 5, \dots)$$

 $g = \frac{1}{4}(1, 2, 1) = (\dots, 0, 0, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, 0, \dots)$
 $f * g = (\dots TODOkorrektberechnen : D, 2, \underbrace{\frac{5}{4}}_{\frac{1}{4} \cdot 4 + \frac{1}{2} \cdot (-2) + \frac{1}{4} \cdot 5}, \frac{5}{4} \dots$

4.7.1 Anwendung: Filter

 $\begin{pmatrix} 1 & 2 & 3 & 2 & 1 \\ 2 & 4 & 6 & 4 & 2 \\ 3 & 6 & 9 & 6 & 3 \\ 2 & 4 & 6 & 4 & 2 \\ 1 & 2 & 3 & 2 & 1 \end{pmatrix}$ Bartlett-Filter

Kantendetektion: Sobelfilter

$$\begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix} \qquad \qquad \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$
Horizontal Vertikal

4.8 Filter

Separierbare Filter Aufteilen des 2D-Filters in 2 1D-Filter: Bearbeiten jeder Zeile/-Spalte mit einem 1D-Filter

Vorteil: Zweifache Anwendung des 1D-Filters weniger aufwändig.

Filter separierbar \Leftrightarrow Matrix hat Rang 1 **Beispiele**:

$$\begin{array}{cccc} \frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix} & & & \frac{1}{5} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\ \text{parierbar} & & \text{Nicht separierbar} \end{array}$$

se

Fourier-Transformation 5

$$\begin{split} \text{FT:} \ \tilde{f}(k) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \cdot \exp(-ikx) \mathrm{d}x \\ \text{Inverse FT:} \ \tilde{g}(x) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \cdot \exp(ikx) \mathrm{d}x \end{split}$$

Tiefpass: $\chi_a(x) = \begin{cases} 1 & \text{falls } |x| \le a \\ 0 & \text{sonst} \end{cases}$
$$\begin{split} \tilde{\chi}_a(k) &= a \sqrt{\frac{2}{\pi}} \cdot \operatorname{sinc}(ak); \, \operatorname{sinc}(x) = \frac{\sin(x)}{x} \\ \text{Dirac-Fkt:} & \int_{-\infty}^{\infty} f(x) \cdot \delta_a(x) = f(a) \\ \tilde{\delta}_a(k) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \delta_a(k) \exp(-ikx) \mathrm{d}x = \frac{1}{\sqrt{2\pi}} \exp{-ika} \\ \text{Kamm-Fkt:} & C_{\tau} &= \sum_{n \in \mathbb{Z}} \delta_{n\tau} \end{split}$$
 $\tilde{C}_{\tau} = \frac{\sqrt{2\pi}}{\tau} C_{\frac{2\pi}{\tau}}$ Abtasten = Multiplikation mit Kamm Faltungssatz $\widehat{f * g} = \sqrt{2\pi} \cdot \widehat{f} \cdot \widehat{g}$ und $\sqrt{2\pi} \cdot \widehat{f \cdot g} = \widehat{f} * \widehat{g}$ $\widehat{f * g} = \sqrt{2\pi} \cdot \widehat{f} \cdot \widehat{g}$ und $\sqrt{2\pi} \cdot \widehat{f \cdot g} = \widehat{f} * \widehat{g}$

5.1 Diskretisierung einer Funktion

$$g_h = g(x) \cdot \sum_m \delta(x - r_m) \text{ mit } r_m = mh, m \in \mathbb{Z} \text{ und Maschenweite } h > 0$$

$$\delta(x - r_m) = \delta_{r_m}(x)$$

$$\delta = \delta_0 \text{Dirac ohne Index} := \text{Dirac an } 0$$

$$\delta_{x-a} = \delta_0(x - a) = \delta_a$$

Faltung mit δ_a $(\delta_a * f)(x) = \int \delta_a(\tau) f(x - \tau) d\tau = f(x - a)$

Faltung mit Dirac = Rechtsverschiebung von f um a $(\delta_a + \delta_b) * f(x) = f(x - a) + f(x - b)$

Abtast theorem 1. Ist das Spektrum $\tilde{g}(k)$ einer kontinulierlichen Funktion g(x) bandbegrenzt, d.h. $\tilde{g}(k) = 0$ für $|k| \ge k_{max}$, dann kann g(x) aus den Abtastwerten $[g(j \cdot \Delta x)]_{j \in \mathbb{Z}}$ exakt rekonstruiert werden sofern $|\Delta x| \le \frac{\pi}{k_{max}}$

Merkregel: Abtastrequenz $\frac{1}{\Delta x}$ mind. doppelt so groß wie maximale Frequenz $\frac{k_{\text{max}}}{2\pi}$

5.2 Fast-FT - $\mathcal{O}(n \log n)$

$$PA(n) = \begin{pmatrix} A(m) & 0 \\ 0 & A(m) \end{pmatrix} \begin{pmatrix} Id & 0 \\ 0 & M \end{pmatrix} \begin{pmatrix} Id & Id \\ Id & -Id \end{pmatrix}$$

6 Quantisierung

6.1 Vektorquantisierung

LBK-Algorithmus

- 1. Berechnen der Startlösung
- 2. Splitting der Codebook-Vektoren:

$$r_i^{(0)} = (1+\beta)r_1^*$$
$$r_{i+L}^{(0)} = (1-\beta)r_1^*a$$

- 3. Zuordnung der Samples zu Codebook-Vektoren
- 4. Berechnung der neuen Codebook-Vektoren
- 5. Falls Fehler größer als Schranke, gehe zu 3
- 6. Gehe zu 2, falls gewünschte Anzahl der Codebook-Vektoren noch nicht erreicht

7 Interpolation

7.1 Resampling

- Rekonstruieren der kontinulierlichen Daten
- Resampling der kontinulierlichen Daten
- Umwandeln in diskrete Daten (für zB. Drucker)

7.2 Interpolation

Rekonstruktion durch

- stückweise konstante Funktionen
- stückweise lineare Funktionen
- durch (kubisches) Polynom

7.3 Lokale Verfahren

Bei lokalen Verfahren hängt der interpolierte Wert nur von von benachbarten Werten ab.

7.3.1 nearest neighbor (Fehler: O(h))

- Suche die nächstegelegene Stützstelle x_i .
- Sprungstelle: Beliebig (Zuordnung zu linker/rechter Stützstelle)
- Interpolierter Wert: y_i
- + kein Rechenaufwand
- ungenau (va. bei glattem f)

Anw: Treppenfunktion

7.3.2 linear (Fehler: $O(h^2)$)

- Direktes Verbinden der Stützpunkte x_i und x_{i+1} durch Geraden
- Interpolierter Wert: $p(x) = \frac{y_i(x_{i+1}-x)+y_{i+1}(x-x_i)}{x_{i+1}-x_i}$
- + wenig Rechenaufwand
- ein bisschen ungenau (va. bei glattem f)

Anw: Grafikkarten (das am weitesten verbreitete Verfahren)

Berechnen der Stützstellen $\frac{x-a}{h}$ TODO

7.3.3 Catmull-Rom (Fehler: $\mathcal{O}(h^3)$)

- Schätze Ableitung in den Stützpunkten
- Finde auf jedem Teilinverall das eindeutige kubische Polynom p_i , welches in beiden Endpunkten die Stützwerte und geschätzten Ableitungen interpoliert¹: $p_i(x) = a_0(x_{i+1}-x)^3 + a_1(x_{i+1}-x)^2(x-x_i) + a_2(x_{i+1}-x)(x-x_i)^2 + a_3(x-x_i)^3$ mit: $a_0 = \frac{y_i}{(x_{i+1}-x_i)^3}$, $a_1 = 3a_0 + \frac{y'_i}{(x_{i+1}-x_i)^2}$ Anmerkung: Hermit-Funktion

¹Formel
n ${\bf nicht}$ auswendig für Klausur

Schätzen der Ableitung mittels Differenzen:

- Vorwärtsdifferenz: $y'_i = \frac{y_{i+1} y_i}{x_{i+1} x_i}$
- Rückwärtsdifferenz: $y'_i = \frac{y_i y_{i+1}}{x_i x_{i+1}}$
- Zentrale Differenz (einfach) $y'_i = \frac{y_{i+1} y_{i-1}}{x_{i+1} x_{i-1}}$
- Zentrale Differenz (exakt) = Mittel von Vorwärts- und Rückwärtsdifferenz

$$y'_{i} = \frac{x_{i} - x_{i-1}}{x_{i+1} - x_{i-1}} y'_{fw} + \frac{x_{i+1} - x_{i}}{x_{i+1} - x_{i-1}} y'_{bw}$$

7.4 Globale Verfahren

Bei globalen Verfahren hängt der interpolierte Wert von allen Werten ab.

7.4.1 Polynom

Gesucht $p(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-1} + x^{n-1}$

Taylorpolynome Vandermonde-Matrix
$$\begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \dots & \dots & \dots & \dots & x \\ 1 & x_n & x_2^2 & \dots & x_n^{n-1} \end{pmatrix}$$

- voll besetzt
- nicht singulär
- schlecht konidioniert
- aufwändig zu berechnen
- + eindeutig lösbar

Bernsteinpolynome $B_i^n(x) = \binom{n}{i} (1-x)^{n-1} x^i$

- nicht geeignet für Polynominterpolation

Lagrangepolynome
$$L_k(x) = \prod_{i=1 i \neq k}^n \frac{x - x_i}{x_k - x_i}$$

 L_k verschwindet an allen Stützstellen außer x_k : $L_k(x_i) = \delta_{ik} = \begin{cases} 1 & \text{für } i = k \\ 0 & \text{sonst} \end{cases}$ \rightarrow Veringerung des Fehlers durch Tschebychef-Stützstellen Interpolationsformel: $p(x) = \sum_{k=1}^{n} y_k L_k(x)$ **Newton-Polynome**

$$q_{0}(x) = 1$$

$$q_{1}(x) = (x - x_{1})$$

$$q_{2}(x) = (x - x_{1})(x - x_{2})$$

$$\vdots \qquad \vdots$$

$$q_{n}(x) = \prod_{i=1}^{n} (x - x_{i})$$

Effeziente und stabile Lösung mit Algorithmus von Aitken-Neville

Ansatz: $p(x) = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2) + \dots + a_{n-1}(x - x_1)(x - x_2) \dots (x - x_{n-1}).$

$$\begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & (x - x_1) & 0 & \dots & 0 \\ 1 & (x - x_1) & (x - x_1)(x - x_2) & \dots & 0 \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

Lösen mit: $p_{i,k} = \frac{p_{i+1,k-1} - p_{i,k-1}}{x_{i+k} - x_i}, a_i = p_{1,i}$ Fehler $f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \cdot w(x)$ Spezialfall: lin. Interpolation n = 1: $f(x) - p(x) = \frac{1}{2!} f^{(2)}(\xi)(x - x_0)(x - x_1)$

7.4.2 B-Spline

Eigenschaften: #(Freiheitsgrade - #(Stetigkeitsbediungungen) = m(n-1) - (n-2)(m-1) = mn - m - (nm - 2m - n + 2) = m + n - 2

8 Freiformkurven

Parametrische Berechreibung der Kurven: $C:[a,b] \to \mathbb{R}^d$

8.1 Bernstein-Polynome

$$B_i^n = \binom{n}{i} (1-t)^{n-i} t^i$$

$$B = \text{span}\{B_0^n, \dots, B_n^n\}.$$

Eigenschaften von B_i^n :

- $0 \le B_i^n \le 1$
- B_i^n hat *i*-fache Nullstelle in t = 0
- B_i^n hat n i-fache Nullstelle in t = 1

•
$$\sum_{i=0}^{n} B_i^n(t) = 1, t \in [0,1]$$

8.2 Bezierkurven

Gegeben seien **Kontrollpunkte** $b_0, \ldots b_n \in \mathbb{R}^d$. Sie beschreiben eine Bezierkurve im \mathbb{R}^d : $C(t) = \sum_{i=0}^n b_i B_i^n(t), t \in [0, 1]$

• Interpolation der Endpunkte n

$$C(0) = \sum_{i=0}^{n} b_i \cdot B_i(0) = b_0$$

$$C(1) = \sum_{i=0}^{n} b_i \cdot B_i(1) = b_n$$

- In den Endpunkten tangential an das Kontroll-Polygon $C'(t) = \sum_{i=0}^{n} b_i \cdot B'_i(t)$
- Bezierkurve liegt in der konvexen Hülle M ist konvex $\Leftrightarrow a, b \in M, 0 < t < 1 : (1-t)a + tb \in M$
- affine Invarianz

Affine Abbildung: Tanslation und lineare Abbildung (zB. Rotation, Skalierung, Scherung....)

$$\Phi(C(t)) = \sum_{i=0}^{n} \Phi(b_i) \cdot B_i^n(t)$$

Variationsreduzierend
 Für beliebige Grade g gilt:
 # Schnittpunkte g mit Kurve ≤ # Schnittpunkte g mit Kontrollpolygon

Algorithmus von de Casteljau

8.3 Bilineare Interpolation

Durch zweifache lineare Interpolation: $(1-s)(1-t)P_1 + s(1-t)P_2 + (1-s)tP_3 + stP_4$

- Interpolation der Endpunkte
- In den Endpunkten tangential an das Kontroll-Polygon
- Bezierkurve liegt in der konvexen Hülle
- affine Invarianz
- Variationsreduzierend

8.4 Coons-Patch

$$F(s,t) = \underbrace{F_t(s,t)}_{t} + \underbrace{F_s(s,t)}_{t} - \underbrace{F_{st}(s,t)}_{t}$$

linearer Blend von C_w und C_o linearer Blend von C_s und C_n bilinearer Interpoland

$$F_s(s,t) = (1-s)C_w(t) + sC_o(t)$$

$$F_t(s,t) = (1-t)C_s(s) + tC_n(s)$$

$$F_{st}(s,t) = (1-s)(1-t)C_w(0) + (1-s)tC_w(1) + s(1-t)C_o(0) + stC_o(1)$$

9 Interpolation multivariater Daten

Euler-Formel für planares Gitter ohne Löcher: $|{\cal F}|-|{\cal E}|+|V|=1$

Speicherstruktur: shared vertex / indexed face set besteht aus:

- Liste der Punkte (vertex list, enthält die Koordinaten der Ecken)
- Liste der Zellen (face list, enthält Indizes der beteiligten Vertexes)

9.1 Lineare Interpolation

9.1.1 Baryzentrische Koordinaten

 $P=\rho R+\sigma S+\tau+T,\,\rho+\sigma+\tau=1$

$$P = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$R = (R_x, R_y)$$

$$S = (S_x, S_y)$$

$$T = (T_x, T_y)$$

$$x = \rho R_x + \sigma S_x + \tau + T_x$$

$$y = \rho R_y + \sigma S_y + \tau + T_y$$

$$1 = \rho + \sigma + \tau$$

9.1.2 Globale Verfahren

Tenorproduktansatz Polynominterpolation nicht möglich, da die Zahl der Freiheitsgrade problematisch ist.

 $\operatorname{Ggf.}$ mehrdeutig oder unlösbar.

Radiale Basisfunktion (RBF) h

$$h =$$

10 Singulärwertzerlegung

 $A = U\Sigma V^T$

Die Spalten von U enthalten die (orthogonalen) EVs von AA^T . Σ ist Diagonalmatrix, $\Sigma = \text{diag}(\sigma_1, ..., \sigma_r)$, wobei σ_i Singulärwert von AA^T , $\sigma_i = \sqrt{\lambda_i}$. Die Spalten von V enthalten die (orthogonalen) EVs von A^TA .

10.1 Anwendung: low-rank-approximation

Ziel: Finde Matrix A_k mit Rang k, so dass gilt: $A_k = \min_{X:rank(X)=k} ||A - X||_F$.

Dies erreicht man mithilfe der SVD: $A_k = U \operatorname{diag}(\sigma_1, \dots \sigma_k, \underbrace{0..., 0}_{r-k}) V^T$

Es gilt: $||A - A_k||_F = \sigma_{k+1}$ (Annahme: Singulärwerte nach der Größe sortiert).

10.2 Anwendung: Lösen singulärer Gleichungen

Pseudo-Inverse von A: $A^{\sim 1} = V \Sigma^{\sim 1} U^T$, wobei $\Sigma^{\sim 1} = \text{diag}(\frac{1}{\sigma_1}, ..., \frac{1}{\sigma_m})$

Ziel: Löse $A\vec{x} = \vec{b}$. $\vec{x} = A^{\sim 1}\vec{b} = \sum_{i=1}^{r} \frac{1}{\sigma_i} (u_i^T b) v_i$. Für die Lösung gilt: $||Ax - b||_2 \to \min, ||x||_2 \to \min$

10.3 Numerische Bestimmung der SVD

- 1. Transformation auf Tridiagonalgestalt
 - a) Ähnlichkeitstransformation
- $Q_i = Id 2n_i n_i^T Q_1 A Q_1 \Rightarrow ($ 2. EWs und EVs der Tridiagonalmatrix bestimmen
 - a) QR-Verfahren $A_0 = Q_0 R_0 \rightarrow A_1 := R_0 Q_0$

11 Hauptachsentransformation - PCA

11.1 Bestimmung der PCA

- 1. Balancieren der Daten Berechne den Mittelwert: $\overline{M} = \frac{1}{N} \sum_{i} X_i$
 - Balancierte Daten: $\overline{X}_i = X_i \overline{X}$
- 2. Bilde die Kovarianzmatrix $C = \operatorname{cov}(X, X) = \frac{1}{N-1} \sum_{i} \overline{X}_{i} \overline{X}_{i}^{T}$
- 3. Diagonalisieren der Kovanianzmatrix

$$C = Q \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & & \\ \vdots & & & \vdots \\ 0 & & \dots & \lambda_n \end{pmatrix} Q^{-1}.$$

Die Spalten von Q sind die Eigenvektoren (bezeichnet als "Hauptachsen").

11.2 QR-Zerlegung

A = QR, wobei Q orthogonal, R Dreiecksmatrix.

+ Keine Pivotisierung notwendig

$$+ \kappa_2(R) = \kappa_2(A)$$

$$+ \kappa_2(Q) = 1$$

 $\rightarrow~\mathrm{QS}$ stabiler und besser konditioniert

11.2.1 Jacobi-Rotationen $\mathcal{O}(n^3)$

Einfügen von 0en in einer Zelle (unter der Diagonalen).

$$J_{ij}(\phi)^{-1} = J_{ij}(-\phi) = J_{ij}(\phi)^T$$

11.2.2 Householder-Spiegelungen $O(n^3)$

Einfügen von 0en in einer Spalte (unter der Diagonalen). $H_w = Id - \frac{2}{wT} \cdot w \cdot w^T$

$$H_w = Id - \frac{2}{w^T \cdot w} \cdot w \cdot H_w x = x - \frac{2 \cdot w^T \cdot x}{w^T \cdot w} \cdot w H_w^{-1} = H_w^T = H_w$$

11.3 QR-Verfahren

Auf QR-Zerlegung basierendes iteratives Verfahren zur Bestimmung der Eigenwerte.

 A_1 bestimme QR-Zerlegung A=QR und setze $A_1=RQ(\ldots$

11.4 Spezialfall QR-Zerlegung für tridiagonale Matrizen

QR-Zerlegung mit nur n-1Jacobi-Rotationen, da pro Spalte nur ein Eintrag unterhalb der Diagonalen $\neq 0$ ist.

$$\underbrace{H_1}_{\text{Householder}} A = \begin{pmatrix} * & * & \dots & * \\ * & * & & \\ & & & \\ 0 & * & & \end{pmatrix}$$

11.5 Bestimmung der Ausgleichsgerade mit Normalengleichungen

Lösen der Gleichung $A^T A x = A^T b$

$$A^{T}Ax = \begin{pmatrix} 1 & \dots & 1 \\ x_{1} & \dots & x_{2} \end{pmatrix} \cdot \begin{pmatrix} 1 & x_{1} \\ \vdots & \vdots \\ 1 & x_{n} \end{pmatrix} = \begin{pmatrix} n & \sum x_{i} \\ \sum x_{i} & \sum x_{i}^{2} \end{pmatrix}$$
$$A^{T}b = \begin{pmatrix} \sum y_{i} \\ \sum x_{i}y_{i} \end{pmatrix}$$

12 Iterative Verfahren

12.1 Fixpunktiteration

Sei $\phi: M \to M$ Selbstabbildung. M Fixpunkt, wenn gilt: $\phi(M) = M$

Wenn $x_{x+1} = \phi(x_i)$ konvergiert, $x^* = \lim_{i \to \infty} x_i$ dann gilt: $\phi(x^*) = x^*$

12.1.1 Banachscher Fixpunktsatz

Sei I ein abgeschlossenes Intervall und $\phi: I \to I$ eine Kontraktion, dh. es gibt eine Konstante L < 1, so dass

$$|\phi(x) - \phi(y)| \le L|x - y|$$
 für alle $x, y \in I$

dann gilt:

- ϕ besitztgenau einen Fixpunkt $x^* \in I$
- die Iterationsfolge $x_{i+1} = \phi(x_i)$ konvergiert für jeden Startwert $x_0 \in I$

12.2 Nullstellenbestimmung: Newton-Verfahren

Starte mit gegebenem Startwert x_0 Bilde die Tangente im Punkt $(x_0/f(x_0))$ und bestimme ihre Tangente Nullstelle: $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$

Konvergenz: Newton-Verfahren konvergiert, falls x_0 nahe der Nullstelle.

12.2.1 im R^n $x_{i+1} = x_i - [J_F(x_i)]^{-1}F(x_i)$

12.3 Nullstellenbestimmung: Sekanten-Verfahren

Starte mit 2 gegebenen Startwerten x_0 und $_1$ mit unterschiedlichen Vorzeichen. Bestimme den Schnittpunkt der Sekante druch $(x_0/f(x_0) \text{ und } (x_1/f(x_1)$

$$x_{i+1} = \frac{x_{i-1}f(x_i) - x_i f(x_{i-1})}{f(x_i) - f(x_{i-1})}$$

12.4 Nullstellenbestimmung: Bisektionsverfahren

Starte mit 2 gegebenen Startwerte x_0 und x_1 , $x_0 < x_1$ mit unterschiedlichen Vorzeichen. Bestimme den Mittelpunkt $x_2 = (x_0 + x_1)/2$ und betrachte das Interval, dessen Grenzen unterschiedliche Vorzeichen hat.

12.5 Nullstellenbestimmung: Regula Falsi

Erweiterung des Bisektionsverfahrens: TODO

12.6 Bestimmung von \sqrt{a} : Heron-Verfahren

$$x_{i+1} = \frac{x_i + \frac{a}{x_i}}{2} A$$

12.7 Lösen von LGS: Jacobi-Iteration $V_{iter} = -D^{-1}(L+R), A_0 = D$

Zerlegung der Matrix A = L + D + R $Dx^{i+1} + (L+R)x^i = b$ $x^{i+1} = D^{-1}(b - Lx - Rx)$

12.8 Lösen von LGS: Gauss-Seidel-Iteration

Wie Jacobi, nur werden bereits berechnete Werte direkt verwendet.

Zerlegung der Matrix A = L + D + R $(L + D)x^{i+1} + Rx^i = b$

12.9 Lösen von LGS: SOR-Iteration

for (i = 1; i <= maxIter; i++) // Anzahl Iterationen
for (k = 1; k <= n; k++) // ein Schritt
{
 xⁱ⁺¹ = xⁱ_k +
$$\omega \left((b_k - \sum_{j=1...k-1} a_{k,j} x^{i+1}_j - \sum_{j=k+1...n} a_{k,j} x^i_j) / a_{kk} - x^i_k \right)
}$$

Oder einfacher: $x_k^{i+1} = (1-\omega)x_k^i + \omega(b_k - \sum_{j=1...k-1} \overline{a_{k,j}x_j^{i+1}} - \sum_{j=k+1...n} \overline{a_{k,j}x_j^i})/a_{kk}$ Für alle 3 Verfahren gilt:

- lineare Konvergenz (je größer die Systemmatrix, desto langsamer)
- SOR konvergiert, wenn A
- GS / J konvergieren, wenn:
 - A strikt diagonaldominant

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}| \quad \forall i$$

 A unzerlegbar und schwach diagonaldominant Unzerlegbarkeit: Matrix A als Graph interpretieren.

$$|a_{ii}| \ge \sum_{j=1, j \ne i}^{n} |a_{ij}| \quad \forall i$$

wobei für ein i >gelten muss!

• In vielen Fällen braucht GS nur halb so viele Schritte wie J

12.10 cg-Verfahren

 $F(x) = x^T A x + 2b^T x + y$

Vektoren u und v A-konjugiert, falls gilt: $u^T A v = 0$ Zur Lösung von LGS: $\mathcal{O}(n^3)$, für dünn besetzte Matrix $\mathcal{O}(n^2)$

12.11 Quasi-Newton-Verfahren

 $(x^{(k)} - x^{(k-1)}) = -H_k(grad(F)(x^{(k)}) - grad(F)(x^{(k-1)}))$